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U(1/1) coherent states and a path integral for the 
Jaynes-Cummings model 
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Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Po Box 79, 
101000 Moscow, USSR 

Received 30 April 1991 

Abstract. The path integral over the coherent states of the U(l/ I )  superalgebra is constmc- 
ted. It is applied to the Jaynes-Cummings model whose dynamical group is U(l / l ) .  

1. Introduction 

There exists an elegant method of constructing a functional integral representation for 
a quanium sysiem provided ihai iis group of dynamicai invariance is known. Ey ihe 
group of dynamical invariance we mean a group whose Lie algebra is a spectrum- 
generating algebra, so that the Hamiltonian of the system is an element of this algebra. 
The functional integral for a system like that is constructed as an integral over 
generalized Perelomov coherent states (cs) (Perelomov 1972). These states may be 
thought of as the set of states generated by the operators of the unitary irreducible 
representation (UIR) of the dynamical group acting on a certain appropriately chosen 
state vector. To illustrate this, some quantum-mechanical systems with the non-compact 
SU(1,l) dynamical symmetry might be mentioned. These, in particular, are the 
hydrogen atom, the Morse oscillator and superfluid Bose systems (Gerry and Silverman 
1982, Gerry 1986). 

In this paper we consider the problem of constructing U(1/1) cs and the path- 
integral representation over those states for the simplest version of Fermi-Bose 
interaction-the Jaynes-Cnmmings (JC) model. U(1/1) algebra is known to be the 4~ 

superalgebra with compact U( 1) x U( 1) even subalgebra. It happens to be the dynamical 
or spectrum-generating algebra for the IC model (Buzano er a/ 1989). 

One may hope to use some standard path-integral methods in studying JC and 
related problems. One of them is based on the procedure of disentangling Pauli matrices 
out of the symbol of T-ordering operator. But it happens to be rather tiresome even 
for the simplest models (Kolokolov 1986). On the other hand, the standard method 
of integrating over fermionic and bosonic variables in the holomorphic representation, 
being very useful in the framework of perturbation theory, is practically useless in our 
case. The U(l j1)  cs path integral seems to be the most appropriate one for the Jc-type 
models. 

2. JC model and U(1/1) superalgebra 

The IC model is assumed to be the simplest version of matter-radiation interaction. It 
describes a two-level atom (or a single f-spin) coupled linearly with a single bosonic 
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mode (Jaynes and Cummings 1963). Using the notation of b and f for the bosonic 
and fermionic modes, respectively, we have as usual 

[b, b'l ={if') = 1 [ b, f1 = [b, f'l = 0. 

In this notation the JC Hamiltonian may be written as 

&=201btb+202f+f  + Abf++ b+fi. ( 1 )  
An atom is here supposed to be in the eigenstates with energies E = 20, and E = 0. 
The interaction constant A may be considered in equation ( 1 )  as a Grassmann or an 
ordinary c-valued number. The Hamiltonian (1) is easily proved to be Hermitian. It 
should also be noted that instead of the operatorsf andf+  one could use Pauli matrices 
by setting 

u+=f'  U-=f U3 =f'f- f . (2) 
Let us now recall the definition of U(]/])  superalgebra (Balantekin et al 1981). 

The bosonic and fermionic bilinear combinations b+b and f +J entering into equation 
(l) ,  generate the Lie algebras of U B ( l )  and UF(l),  respectively. The Bose-Fermi 
bilinears bf+ and b+f close into the set b+b, f'f under anticommutation 

{bf', b+f}=b+b+f+f {bf',bf'}={bf, bf]=O. 

Thus, bilinear combinations bf + and fb' as the odd generators, and b+b, f'f as the 
even generators form the Lie superalgebra U( 1/1) with the even subalgebra U( 1 )  x U( 1) .  
The unitary operator fi representing the U(1/1) supergroup action in the super Fock 
space formed by a tensor product of the Fock spaces of operators b and f can be 
presented in the form 

(3) 
where complex Grassmann parameters 0 and 8 are supposed to anticommute with 
fermion operators; w , ,  w ~ E Q , , .  Note that under the action of U ( o , ,  w 2 ;  0, &) the 
operators b and f transform through each other, but the commutation relations 

6 ( q ,  02; 8, &) = exp(io, b+b + iw,f+f+ Ob'f - bf ' e )  

[b, b+l = {if') = 1 
remain unchanged. 

Let us now express equatio? (1) in terms of the U(1/1) Casimir operator fi= 
f "f+ b'b and the generators M = f(b+b - f'f+ l) ,  Q = bf +, Q'= 6+f: The Hamil- 
tonian ( 1 )  becomes 

fi = w 2 - 0 1  + ( w ,  + w 2 ) ~ + 2 ( w l  -m2)6 + A Q +  Q'i. (4) 

The following structure equations of U(1/1) hold: 

[M, Q'l = Q' {Q+, Ql=  fi [M. 61 = - Q 
[6, f i l =  [Q,  NI =[Q', NI ={Q', 0') =IQ, Q } = O .  

( 5 )  

The U I R ~  of the superalgebra (5) are well known (de Crombrugghe and Rittenberg 
1983). In our case the Casimir operator N, whose eigenvalues label the IRS of U ( l / l ) ,  
takes on non-negative integer values. So, for any integer n > 0 we have a 2D I R  which 
in the basis of (le,), le2)) is given by 

Q+lel) = Qfle2)=0 Q l e J  = 0 91 e2) = &le,) 

261el )=(n-1) \e , )  2 6 1  e2) = ( n + 1 )le2) (60) 

file,)= file2)= 
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where 

For n = O  the I R O f  U(1/1) is ID: 

Q' l4  = Oleo) = 0 lirle,) = 0 leo)= 10)x ( y ) .  ( 6 6 )  

At this point some remarks should be made. To consider the JC Hamiltonian (4) as 
an element of the U(1/1) superalgebra, one must keep the parameter A in (4) as a 
Grassmann number. In this case the Hamiltonian becomes an even generator of U(1/1) 
and can be diagonalized by the appropriate rotation in the U(1/1) superspace (Buzano 
et al 1989). But as we shall see later, in terms of the U(1/1) cs path integral there is 
a possibility of considering both cases, the Grassmann and c-valued A. So, for the time 
being, we do not specify the parameter A. 

3. U(1/1) coherent states 

we now describe U ( i / i )  cs as defined for the ordinary Lie groups by Fereiomov 
(1972) and generalized for Lie supergroups by Bars and Giinaydin (1983). These states 
are obtained by operating on a vector of the U(1/1) IRS by a group element in the 
form of equation (3). Consider a 'lowest state' lel) that transforms irreducibly under 
U ( l )  x U ( l )  and is annihilated by the operator Q. We define the U(1/1) coherent state 
IS; n) labelled by the Grassmann parameter 0 that belongs to the coset space 
U(l / l ) /U(  1)  x U(1) as 

_.. 

le; n )  =exp(-eQ+)le,) = le,) -hi ole2). 

(6'; rile; n ) =  1 + ne'e =exp(ne'e). 

(7) 

The overlap of two states 16; n) and IS'; n )  is given as 

._.. A n  imnnrtint .... r-...-... nmnertv r._r _.., o f  _. thew- ...-I- Qtilteq I .---- i s  .- thnt the" -..-, satisfy !he comp!e!enecr re!a!ion 

where f denotes unity in the representation n. We use the following definitions: 

Note that the cs (7) depend on the representation index n. For every value of n there 
exists an overcomplete set of cs 10; n ) .  For n = 1 the cs (7) coincide with the so-called 
fermionic coherent states introduced by Ohnuki and Kashiwa (1978). It is quite natural 
due to the fact that the operators Q' and Q at n = 1 become the usual fermionic 
opera!ors, as fo!!ows from equations ( 6 a ) .  

It  is straightforward to see that 

- d e d e  (e; n/ej)(ej lO; n)exp(-nO@)-- - 6,. I n (9) 
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By virtue of equation (9) for any operator F acting in the ZD space spanned by le,) 
and lez) we have 

For definiteness we assume that any Grassmann number is commutable with the states 
1%) and (ell: 

ole,) =.le,)e e(e,l=(e,le (the same for #). 

For further use we present the averages over U(1/1) cs of the operators entering into 
equation (4): 

1 D^&L :.....-..-I ... 1 P L l l  ,",q,ax, 

We now consider the path integral over U(1/1) cs for the JC partition function 

z = sp exp(-pfi). 

On account of equation (10) we have 

- 
It is to be kept in mind that all Grassmann variables of integration 6 0, FN, t ~ , .  . . C O ,  50 
are supposed to be labelled by the representation index n, as is done in equation (12). 
To simplify the notation, we omit this dependence for the moment. For small E we have 

(ti: nIexp(-efi)Ib: n )  

=(&; nl(1 -&I&; n )  

=(ti; 4 6 ;  n l ( l - s H ( L 6 ) )  

=(ti; n i l j ;  n)exp(-EH(&,6)) 
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where 

The integration over e, g i n  accordance with equation (10) yields 

In the continuous limit this may be written as 

x ex,( - n  Iop f '" ' ( f )# '" ' ( t )  dt  - H(f '" ' ;  6'"') d t  I (15) 

where we restore the n-dependence of the 6. Note that each of the integrals over f'"', 
6'"' is normalized by the condition 

For the IC model, making use of equation (11) we obtain 

D ~ ' " ' (  t)Dt'"'( I )  

where the change 6'"' #'"'/A, f'"'+ $I")/& has been made. 
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If one considers A as a Grassmann parameter, the integration in (16) can be easily 
performed in the usual fashion by making a simple shift of the integration variables 
F'"'(t)  and @"'(f). This leads to  the known result by Buzano et al (1989), obtained 
by direct diagonlization of the AJC (4). In the case of c-valued A the path integral in 
(16) over f ' " ' ( f ) .  [ ' " ' ( t )  may be easily recognized as a partition function for a single 
f-spin coupled with a constant field. To be more precise, let us consider the Hamiltonian 

An = 2nu3 + ELT+ + gu. 
Cl and g being real and complex constants, respectively. The eigenvalues of the go 
are +(02+gg)1'2 and -(R'+gg)"', so that 

Z, = Sp exp( -p&) = 2 cosh p-. 

On the other hand, through the fermionic operators (2) A, can be presented as 

A,= zn(f+f-f)+gf+gf+. (17) 

As a result of equation (17) the fermion path-integral representation for the partition 
function Z,, is obvious (see, for example, Soper 1978) 

z,(n = g =O) = 2. 

Note that equation (18) follows from our approach as a particular case. Namely, it is 
a path-integral representation for the partition function Z, over cs (7 )  provided n = 1. 
Comparing equations (16) and (18) we find 

ZJc= 1 + 2  C exp(-2nw,p + p ( w , - w 2 ) )  cosh p J ( w ,  -w,)'+AXn. (19) 

This enables us to conclude that the eigenvalues of the JC Hamiltonian are 

" = I  

E,=O E;= ,  = z W , n +  w 2 - w ,  + J(wl - w , ) 2 + ~ ; \ n  

which are the correct expressions (see, for example, Agarwal and Puri 1986). 

5. Conclusions 

The path-integral representation over U(1/1) cs, which we have considered for the JC 

model, may also be applied to various nonlinear ic-type models, provided their 
Hamiltonians belong to the U(1/1) enveloping algebra. For example, one can easily 
obtain the path-integral representation for the partition function Z = exp(-pH) where 

A= w , r 5 + w 2 M + ~ ~ + ~ ~ + + ~ ~ + ~ ; i .  

On the other hand, to represent in a similar way the partition function of the 'dressed' 
IC or Rabi model, one has to deal with the Osp(2/2) cs. The ED non-compact Osp(2/2) 
superalgebra happens to be the spectrum-generating algebra for the 'dressed' JC model 
(Buzano et ol 1989). To label Osp(2/2) cs, one has to use Grassmann and c-valued 
parameters simultaneously and the corresponding path integral turns out to be a more 
complicated construction, This and related problems will be discussed elsewhere. 
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